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1	 By using the substitution	 tant
2
1 i= , find 

cos1

1
d

0

2
1

i
i

+

r

; . [5]

2	 (i)	 Using	the definitions for cosh x  and sinh x  in terms of ex and e-x, show that cosh sinhx x 1
2 2 /- . [3]

	 (ii)	 Hence solve the equation sinh coshx x5 7
2 = - , giving your answers in logarithmic form. [5]

3	 It is given that ( )f tanhx x
x

3

11=
+
-- d n for x 12- .

	 (i)	 Show that ( )

( )

f x
x2 1

1

2
=

+
ll . [6]

	 (ii)	 Hence find the Maclaurin series for f(x) up to and including the term in x2. [4]

4	 It is given that cosI x xd
n

n

0

2
1

=
r

;  for n 0H .

	 (i)	 Show that I n
n I1

n n 2
=
-

-
 for n 2H . [5]

	 (ii)	 Hence find  I11 as an exact fraction. [3]
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5	 You are given that the equation x x x4 1 0
3 2+ + - =  has a root, a, where 1 01 1a- .

	 (i)	 Show that the Newton-Raphson iterative formula for this equation can be written in the form

 x
x x
x x
3 8 1

2 4 1

n
n n

n n

1 2

3 2

=
+ +

+ +

+
. [3]

	 (ii)	 Using the initial value .x 0 7
1
=- , find x2 and x3 and find a correct to 5 decimal places. [3]

	 (iii)	 The diagram shows a sketch of the curve y x x x4 1
3 2= + + -   for  . x1 5 1G G- .

x

y

O

	 	 Using the copy of the diagram in your answer book, explain why the initial value x1 = 0 will fail to 
find a. [2]

[Questions	6,	7	and	8	are	printed	overleaf.]
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6

x
63

y

O

	 The diagram shows part of the curve ( )ln lny x= _ i. The region between the curve and the x-axis for 
x3 6G G  is shaded. 

	 (i)	 By considering n rectangles of equal width, show that a lower bound, L, for the area of the shaded 

region is  ln lnn n
r3

3
3

r

n

0

1

+

=

-

be lo/ . [3]

	 (ii)	 By considering another set of n rectangles of equal width, find a similar expression for an upper bound, 
U, for the area of the shaded region.  [1]

	 (iii)	 Find the least value of n for which .U L 0 0011- . [4]

7	 The equation of a curve is  
( ) ( )

y x x
x
1 7

1
2

=
+ -
+ .

	 (i)	 Write down the equations of the asymptotes. [3]

	 (ii)	 Find the coordinates of the stationary points on the curve. [5]

	 (iii)	 Find the coordinates of the point where the curve meets one of its asymptotes. [3]

	 (iv)	 Sketch the curve. [3]

8	 The equation of a curve is x y x x y2 2 2 2+ - = + . 

	 (i)	 Find the polar equation of this curve in the form ( )fr i= . [3]

	 (ii)	 Sketch the curve. [2]

	 (iii)	 The line x y2 2+ =  divides the region enclosed by the curve into two parts. Find the ratio of the two 
areas. [6]
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Question Answer Marks Guidance 
1   2

2

1
cos

1

t
t

 



 

 
M1 

 

 
Using t substitution for 
both cos  and d   

 

   
2 2d 1 1 1 1

sec 1 tan
d 2 2 2 2

t  


    
 

 
 

A1 
 
Subs correct 

 

   2

2

1 2d
   d . d d

2 1

t tt
t

 
   


 

 
M1 

 
Dealing with limits and attempting 
integration. 

 

   1
1 2

2 2 2 2 2
0

0 2

1 2d 1 2d
  

1 1 1 1 1
1

1

t t tI
t t t t t
t


  

     



 

 


 

 
A1 

 

 
Correct integral 
 

 

   
 

1
1

0
0

2d
1

2

t t 


 
 

A1 
 
Answer 

 

    [5]   
   Alternative 

2 1
2

22 2 12
22 1 0

0 0 2

2

0

1 cos 2cos

1 1 1 1
d d sec d

1 cos 2 cos 2

1 1
2 tan tan tan 0 1

2 2 2

 



 

   
 



 

  


      

     

 
 

SC3 

  

2 (i)  e e e e
cosh ,  sinh

2 2

x x x x

x x
  

   

 

 
B1 

 
Correct formulae 

 
 

   2 2

2 2 e e e e
cosh sinh

2 2

x x x x

x x
     

      
   

 
 

M1 
 

 
Dealing with squaring correctly 
 

 
Difference of squares can be 
used 

    2 2 2 21 1
e 2 e e 2 e .4 1

4 4
x x x x          

 
A1 

 
www  All steps seen 

 

    [3]   
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Question Answer Marks Guidance 
2 (ii)  2cosh 1 5cosh 7x x        
   2cosh 5cosh 6 0x x     M1 Use (i)  
     cosh 2 cosh 3 0x x     M1 Attempt to solve quadratic E.g. correct formula or 

expansion of their brackets 
gives 2 out of 3 terms correct 

   cosh 2, 3x   A1   
    1cosh 2 ln 2 3x       A1 Use correct ln formula Condone lack of ± 

    1   and cosh 3 ln 3 8x      A1 Use correct ln formula Condone lack of ± 

    [5]   
3 (i)  

2 2

d 1 (3 ) (1 )
  

d (3 )1
1

3

y x x
x xx

x

   
 

    

 
B1 

 
Sight of standard diffn for tanh–1x  

   M1 Fn of fn and diffn of quotient  
   A1 Soi correct quotient (i.e. correct 

expression for 2nd part) 
 

   

 2 2

d 4

d 13 (1 )

y k
x xx x

 
   
     

 
 

A1 
  

   d 1

d 2(1 )

y
x x


 


 

 
A1 

 

 
Correct for y′ 
 

 

   2

2 2

d 1

d 2(1 )

y
x x

 


 
 

A1 
 
2nd diffn (NB AG) 

 

    [6]   
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Question Answer Marks Guidance 
3 (ii)  1 1

2

1
When 0, tanh  or ln 2 or ln 2

3
x y    

B1 
 

For 1st value (needs to be exact) 
 

 

   d 1

d 2

y
x
   

   

   2

2

d 1

d 2

y
x

  
B1 

 
For both  

   2
1 1 1 1

tanh
3 2 2 2

xy x           
   

 
M1 Use of correct Maclaurin’s series  

   2
1 1 1

tanh
3 2 4

xx    
A1 Accept 0.347  

    [4]   
4 (i)  1cos , d cos dnu x v x x   M1* By parts the right way round  

   2d ( 1)cos sin , sinnu n x x v x     A1   

   221 2 2

0 0
cos sin ( 1) cos sin  dn n

nI x x n x x x


         
A1 

 
Integral so far 
 

 

    20 ( 1) n nn I I     *M1 
 
 

Correct use of 2 2sin 1 cosx x   
Dependent on 1st M 

 

   
2 2

1
( 1)n n n n

nnI n I I I
n 


      
A1 www AG  

    [5]   
4 (ii)  1 1I  B1 For I1 soi  

   
11 9 1

10 10 8 6 4 2
.... . . . .

11 11 9 7 5 3
I I I    

M1 
 

Use of (i) to give product of 5 fractions  

   
11

3840 256
 oe

10395 693
I    

A1 Correct fraction  

    [3]   
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Question Answer Marks Guidance 
5 (i)  3 2f ( ) 4 1x x x x        

   2f '( ) 3 8 1x x x    B1 Diffn  

   

   

3 2

1 2

2 3 2

2

4 1

3 8 1

3 8 1 4 1

3 8 1

n n n
n n

n n

n n n n n n

n n

x x xx x
x x

x x x x x x
x x



  
  

 

     


 

 

 
M1 

 
 

A1 
 
 

 
Correct application of N-R formula 
 
 
And completed with suffices on last line 

 

   3 2

2

2 4 1

3 8 1
n n

n n

x x
x x

 


 
 

 
 

 
NB AG 

 

    [3]   
5 (ii)  x2 = –0.72652,   

x3 = –0.72611 
B1  
B1 

 NB x4 = –0.726109 

       
    = –0.72611 B1   
    [3]   
5 (iii)   

Sketch plus at least one tangent 

 

 
 

B1 
 

 

 
 
At least the first tangent and vertical line 
to curve 

 
 
 
 
 
 
 
 
 
 
 

   Converges to another root. B1 
 
 

Or positive root or, for e.g. "x = 0 is the 
wrong side of a turning point" www 

Use of formula to find this root 
numerically is not acceptable 

    [2]   
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Question Answer Marks Guidance 
6 (i)  

Width of rectangles is 
3

n
 

B1 Statement about width  

   Sum of areas of rectangles  M1  Height or area of at least one rectangle  
   3 3

ln(ln 3) ln ln 3 ......
n n

          
   

 
 

A1 
 
Correct conclusion  www 

 

   1

0

3 3
ln ln 3

n

r

r
n n





      
  

  
  1468 or  

    [3]   
6 (ii)  

1

3 3
ln ln 3

n

r

r
n n

      
  

  
B1   

    [1]   
6 (iii)  3 3

ln(ln 6) ln(ln3)U L
n n

      
M1* Subtraction to obtain the difference of 

two terms 
 

   
 3 3 ln 6
ln(ln 6) ln(ln 3) ln

ln3n n
     
 

 
A1 

 
  

   3 ln 6 3
ln ln(1.6309)

0.001 ln3 0.001
n n      

 
 

*M1 
 

Dealing with inequality to obtain n 
dep on first M 

 

   least 1468n   A1 Accept n ≥ 1468 or n > 1467  
    [4]   
7 (i)  x  1 B1 B1 for each  
   x = 7 B1   
   y = 1 B1 1 for any extras  
    [3]   
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Question Answer Marks Guidance 
7 (ii)  2 2

2 2

d ( 6 7)2 ( 1)(2 6)

d ( 1) ( 7)

y x x x x x
x x x

    


 
 

M1 
A1 

 

Diffn using quotient rule 
 

Or expand as partial fractions 
and use fn of fn rule 

   2 20 when ( 6 7)2 ( 1)(2 6) 0x x x x x           

   23 8 3 0x x    A1 Quadratic 
 

 

   1 1 1
3, ; ,

3 2 8
x y      

A1 
 

Both x values 
 

Or: A1 one pair 
 

   1 1 1
i.e.  3, , ,

2 3 8
       
   

 
A1 

 
Both y values 
 

       A1 other pair 

    [5]   
7 (iii)  2 2When 1, 6 7 1y x x x      M1 

A1 
  

   4 4
6 8 ,1

3 3
x x          

 
 

 
A1 

 
Coordinate pair needs to be seen. 

 

    [3]   
7 (iv)  B1 

 
 

B1 
 

B1 
 

Left section, cutting asymptote and 
approaching  y = 1 from below 
 
Right hand section 
 
Middle section all below x-axis labelling 
intercept on graph or by a statement 

 

    [3]   
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Question Answer Marks Guidance 
8 (i)  2 2 2Substitute , cosr x y x r     M1 

A1 
  

   2 cos 1 cosr r r r        A1 cao  
    [3]   
8 (ii)   

B1 
 
Cardioid (General shape) 

 
 

   B1 Correct shape at pole, r = 2 and 
symmetric 

e.g. cusp clearly at pole, 
vertical tangent at r = 2 

    [2]   
8 (iii)  Line cuts curve at (0, 1) and (2, 0) B1   
   

2

0

1
Total area = 2 (1 cos ) d  

2



     
 
 

 
 

 

   
2

0
0

1+cos2
= (1+2cos +cos )d 1+2cos + d

2


        

 


  

  
M1 

 
Formula for area used 

Sight of expansion and attempt 
to integrate 

   

0

3 1 3
2sin sin 2

2 4 2



         
 

A1   

   1
2 2

0

1
area in 1st quadrant = (1 cos ) d  

2


    

 
 

  

   1

2

0

1 3 1 3
2sin sin 2 1

2 2 4 8



          
 

 
A1 

  

   Area under line in 1st quadrant = 1  M1   

   3 3
Area enclosed by line and curve = 1 1

8 8
      

   

   3 3 3
ratio = : 3 :1

2 8 8
      

 
 

 
A1 

 
Or ratio 1 : 3 

 

    [6]   
 


